Exercise 59

If $\lim _{x \rightarrow 1} \frac{f(x)-8}{x-1}=10$, find $\lim _{x \rightarrow 1} f(x)$.

Solution

Plugging in $x=1$ or applying the Quotient Law is out of the question because the denominator becomes zero. In order for this limit to exist and be equal to 10 , the numerator must contain a factor of $x-1$ that cancels out with the one in the denominator. For simplicity, let

$$
f(x)-8=A(x-1),
$$

where A is a constant to be determined.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)-8}{x-1} & =10 \\
\lim _{x \rightarrow 1} \frac{A(x-1)}{x-1} & =10 \\
\lim _{x \rightarrow 1} A & =10 \\
A & =10
\end{aligned}
$$

Substitute this value for A into the hypothesis and solve for $f(x)$.

$$
\begin{gathered}
f(x)-8=10(x-1) \\
f(x)-8=10 x-10 \\
f(x)=10 x-2
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1}(10 x-2) \\
& =10(1)-2 \\
& =8 .
\end{aligned}
$$

